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Recombinant DNA technology allows the manipulation of the physical 
properties of proteins that perform electron transport and photochemical 
processes. Recent work is reviewed that has a potential impact on the 
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Introduction 

This review is p rompted  by  the recent enthusiasm 
for the use of biological macromolecules  as building 
blocks for the construction of molecular  electronic de- 
vices (MEDs). Molecular electronics is a term that has 
a dual meaning. One meaning refers to electronic de- 
vices that use materials whose  unique properties result 
from their molecular structure. In this regard, proteins 
can be used in MEDs to sense, respond to, or record 
chemical, electrical, or physical stimuli. Examples in- 
clude the use of  the bacterial photopigment  bacte- 
riorhodopsin as a three-dimensional medium for the 
storage and readout  of optically encoded  information 
[1",2",3]. The second definition of molecular electron- 
ics embodies  the concepts that individual molecules 
are functional units responding to stimuli, and that 
they have the potential to be  interconnected in or- 
der to replicate electronic circuits functionally. Good 
examples of such molecular electronic devices do not 
yet exist, but the principles necessary for their design 
and assembly are beginning to emerge from a variety 
of areas. 

From the perspective of practical device design, there 
are several levels at which the ability to modify protein 
molecules using recombinant  DNA technology could 
have an impact on the fabrication of MEDs. These 
include alteration of intrinsic optical and electronic 
properties, increasing protein stability for operation in 
non-biological environments,  and modification of sur- 
face properties to facilitate de  n o v o  design of mesoscale 
molecular assemblies or molecular circuits. Current ac- 
tivities in each of these categories are described below. 

Modification of protein electronic and physical 
properties 

Naturally occurring proteins incorporate a wide range 
of physical properties that are of potential use in elec- 
tronic devices. In most cases, the useful properties 
derive from a prosthetic group such as a metal  cen- 
ter, organic redox  cofactor, or chromophore.  Although 
naturally occurring redox and photoactive proteins ex- 
hibit great functional diversity, this is achieved through 
a limited number  of prosthetic groups whose  proper-  
ties are modulated through interaction with amino acid 
side chains of the surrounding protein moiety. At- 
tempts to engineer  proteins in order to modify  their 
properties in useful ways have followed precedents  
suggested by  the study of structure-function relation- 
ships in natural systems. In this respect, heme-contain-  
ing proteins, which comprise a diverse set of molecules 
with electron transfer, ligand binding, or catalytic func- 
tion, are of particular interest. Alterations in the elec- 
tronics or chemistry of the heme  iron center frequently 
produce large changes in optical spectroscopic or mag- 
netic properties which are useful as indicators for state 
assignment or device readout. Following pioneering 
work  on cytochrome b5 [4], myoglobin [5-8], and cy- 
tochrome p450 [9], recent work  reporting site-directed 
modifications of  residues that are heme iron ligands, or 
can otherwise influence heme spectral properties, in- 
clude additional studies on cytochrome p450 [10] and 
myoglobin [11], together with studies on cytochrome 
c peroxidase [12,13] and iso-l-cytochrome c [14]. Al- 
though the study of the structure-property relation- 
ships that affect heme proteins remains an area of 
active interest [15"], few systematic efforts have been  

Abbreviation 
MED--molecular electronic device. 
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directed at producing unusually stable molecules that 
could increase the reliability of state assignment. How- 
ever, a serendipitous enhancement  of  protein stability 
was reported for a site-directed mutant of iso-l-cy- 
tochrome c [14], in which an internal asparagine had 
been  changed to a hydrophobic isoleucine residue. 
This alteration resulted in the loss of  an internal wa- 
ter molecule whose  location in the interior of the native 
protein was postulated to be  energetically unfavorable. 
Similar hydrophobic  enhancements  could direct further 
efforts towards the important goal of stabilizing redox 
proteins in non-aqueous environments.  

A property central to the function of many MEDs is 
the regulation of electron-transfer rate be tween pro- 
teins or be tween  proteins and an external oxidore- 
ductant. Physical aspects of the electron-transfer pro-  
cesses in proteins are now relatively well understood, 
and suggest that electron-transfer rates depend  pri- 
marily upon  prosthetic group separation, difference in 
oxidoreduction potential and molecular reorganization 
energy [16",17]. This is consistent with recent site-di- 
rected modifications of the invariant Phe82 residue in 
yeast  iso- l -cytochrome c, suggesting that intermolecu- 
lar electron transfer does not require the participation 
of specific aromatic amino acids as electron wires be- 
tween protein prosthetic groups [18,19]. Nevertheless, 
translation of the physical requirements for efficient 
electron transfer into a specific modification strategy 
remains complicated, as shown by the results obtained 
by  Barker et al. for yeast iso-l-cytochrome c [20]. In 
addition to heine-containing redox proteins the intro- 
duction or regeneration of copper-binding sites in pro- 
teins has been  investigated. In one study, both  type I 
and type II copper  site properties could be obtained by  
addition of an appropriate external ligand to an azurin 
mutant in which one of the native histidine copper  
ligands had been  deleted by  site-directed mutagene-  
sis [21]. In a second study, site-directed modifications 
of cytochrome c were  performed in order to introduce 
a copper  ligand site [22]. In both cases, the modified 
proteins appeared  to lack the intrinsic stability of the 
native molecule, but may point the way to successive 
generations of molecules with useful functions. 

Interaction specificity 

Because rates of intermolecular transfer depend  very 
strongly on prosthetic group separation distance [16-, 
17], reactions between reversibly binding electron- 
transfer proteins depend on interactions that ensure 
the proper  relative intermolecular orientation. Early 
work  that modeled  the interactions of cytochromes c 
and b5 established the importance of solvent exclusion 
and complementary  electrostatic interactions in radox 
protein interactions [23]. This precedent  has since been  
generalized to many  other biological electron-transfer 
interactions. With the advent of site-directed mutagen- 
esis methods, investigation of intermolecular recogni- 
tion interactions has intensified [24-29]. Most notably, 

methods have recently been  developed that discrimi- 
nate between the relative contributions of the princi- 
pal components  of  intermolecular recognition: polar 
interactions that result f rom hydrogen bonds  and salt 
bridges forming in the interaction domain, and non-po- 
lar van der Waals interactions that occur w h e n  protein 
surfaces dehydrate upon formation of the complemen-  
tary complex [30"]. This methodology also facilitates 
mapping  the interaction domain  between two associ- 
ating macromolecules,  a key  step in the development  
of  generalized strategies to both  study natural systems 
and engineer alternative interactions among molecules 
suitable for use in MEDs. 

Bacteriorhodopsin in MED applications 

Bacteriorhodopsin (molecular weight 26000 D) func- 
tions as a light-driven proton p u m p  in the purple mem- 
brane of the salt-marsh micro-organism Halobacterium 
halobium [1",2"]. Bacteriorhodopsin incorporates a reti- 
nal chromophore,  which is covalently bound  as a pro- 
tonated Schiff base in an all-trans conformation in the 
resting state. Upon  absorbing a light photon,  the reti- 
nal photoisomerizes and subsequently undergoes a 
multistep photocycle that spans much of the visible 
spectrum. The photocycle can be  s topped at specific 
intermediates by low temperature trapping and recy- 
cled by  thermalization or application of a second light 
pulse of the appropriate wavelength [1",2"]. Photoac- 
tivated retinal switching occurs with high quantum 
yields at disparate wavelengths, which facilitate state 
assignment, and produces both  changes in protein re- 
fractive index and a photoelectric potential in oriented 
assemblies. These properties, together with the excel- 
lent stability of the protein w h e n  immobilized in poly- 
mer  films or gels, form the basis for a variety of pro- 
totypes for data storage media, holographic memory,  
and  electro-optic applications [1",2",3,31,32"]. Three-di- 
mensional photochromic memories  have incorporated 
bacteriorhodopsin that has been  oriented by  an ex- 
ternal electric field and then immobilized in a solid 
polyacrylamide matrix [2"]. This application exploits 
the two-photon absorption cross section of bacteri- 
orhodopsin and requires that a small vo lume of the 
matrix be  simultaneously illuminated by intersecting 
laser beams for data storage. 

Readout is achieved by reillumination, which produces 
an electrical signal on the cuvette surface that depends 
on  the state of the irradiated volume in the data storage 
matrix. In this context, it is interesting to note recent 
experiments  demonstrating the maintenance of redox 
protein properties when immobilized in silicate glasses 
'[33"], as well as preservation and control of proteolytic 
enzyme activity in a photochromic azobenzene copoly- 
mer  [34]. Although most readily applied in biosensor 
applications, both schemes could potentially be  use- 
ful in three-dimensional optical memory  applications 
that utilize photochromic properties of incorporated 
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proteins or that couple protein catalytic properties to 
the photochromic matrix. 

Current work  on bacteriorhodopsin with relevance to 
molecular electronics involves finding additives, alter- 
native pigments, or site-directed mutants of  the protein 
that will alter the relative stabilities of the photo-in- 
termediates [35], enhance stabilization of the final M 
intermediate at room temperature [36], or alter other 
aspects of  photocycle-coupled proton translocation 
[37,38] that might facilitate readout  from information 
storage applications. Consequently, investigations of 
the Asp96 Asn modification [39], which alters coupling 
of retinal photoisomerization to proton translocation, 
continue to have substantial practical interest [40]. The 
physical changes in the modified protein include an 
increase in the lifetime of the intermediate from 10 ms 
to 750 ms, together with improved diffraction efficiency 
and photochromic sensitivity relative to the native pro- 
tein. Considerable latitude for property improvement  
exists using a combination of site-directed modifica- 
tions at the chromophore  binding site, introduction 
of alternative chromophores,  or the engineering of 
modified ion-binding sites, all of  which can affect inter- 
mediate lifetimes and spectral properties [1",2"]. In this 
regard, the recent structure determination of bacteri- 
orhodopsin by electron diffraction methods [41"], cou- 
pled with rapidly advancing methods of computational 
simulation [42"], may provide new insights into the en- 
gineering of bacteriorhodopsin for MED applications. 

prosthetic groups in sensor or non-linear optical ap- 
plications depends  critically on the ability to control 
prosthetic group orientation precisely relative to the 
electrode or optical waveguide  surface. Site-specific in- 
troduction of anchoring points in a protein of known 
three-dimensional structure provides a straightforward 
solution to this problem. As an example, recent site-di- 
rected modifications of the heine protein cytochrome 
b5 carried out at the University of Illinois introduced 
cysteine residues at specified positions on the molecu- 
lar surface. This allowed oriented coupling to a silane 
substrate and produced immobilized molecular  arrays 
demonstrating a high level of  heme prosthetic group 
orientation as determined by  linear dichroism spectr- 
oscopy. 

Methods to introduce two-dimensional periodicity on 
surface molecular  arrays depend  either on engineer- 
ing both intermolecular interactions [30"] and anchor- 
ing sites for surface immobilization, or on schemes that 
erect molecular  assemblies on a scaffold already pos- 
sessing periodic order on the few tens of  angstroms 
scale. Scaffold possibilities include natural two-dimen- 
sional lattices [43], DNA lattices [51"], or the very highly 
ordered synthetic lattices formed from streptavidin an- 
chored to surfaces through biotinylated phospholipids 
[52"]. As streptavidin is a tetrameric protein with four 
biotin-binding sites arranged with approximate  tetra- 
hedral geometry,  two biotin-binding sites per  tetramer 
remain f ree  in the two dimensional arrays and provide 
a regular lattice for attaching additional molecules (Fig. 
1). 

Oriented protein immobilization on surfaces 

Bacteriorhodopsin is not  unique in its ability to order 
spontaneously in two-dimensional films that resemble 
its native membrane  state and, indeed, other mem-  
brane protein systems have been  suggested for use or 
have potential in a variety of MED or related biosensor 
roles. Recent work includes studies of engineered bac- 
terial t ransmembrane pores [43] and isolated bacterial 
reaction centers immobilized on electrode surfaces [44]. 
In these cases, surface orientation of the protein com- 
plexes results from preexisting interactions between 
the protein complexes or their membrane  environ- 
ments. However,  a number  of experiments  have been 
carried out that involve tethering proteins to electrode 
surfaces through polymeric 'wires' [45,46] or through 
surface electrostatic interactions [47] in order to en- 
hance electron-transfer efficiences. Related studies of 
interest examine properties of soluble proteins con- 
jugated to photo- or redox-active organic substituents 
that enhance enzyme catalytic function in the absence 
of natural cofactors or regeneration systems [48-50]. 
It is easy to envision hybrid systems that incorpo- 
rate proteins with conjugated cofactors immobilized 
on electrode surfaces. Although the forgoing studies 
emphasize electron conduction be tween  device com- 
ponents, the efficiency of many  devices incorporating 

Molecular electronics components 

Streptavidin 
Biotinylated redox protein 

Biotinylated DNA [~ giotinylated lipid 
~ Lipid-anchored 

redox protein 

Hypothetical molecular electronics architecture 

Fig. 1. Illustration of molecular electronics components and poten- 
tial architectural features of self-assembling systems restricted to dif- 
fusion in two-dimensional lipid films. 
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Strategies for protein patterning and circuit 
fabrication 

that  genuine  approaches  exist to investigate the limits 
o f  this technology.  

Al though it appears  possible that quite complicated 
molecular  assemblies could be  erected on  two-dimen-  
sional protein lattices using a combinat ion of  chemi- 
cal conjugation,  site-directed introduction o f  anchor  
points, and molecular  fusions at the DNA level (re- 
v iewed  e lsewhere  in this issue), the materials descr ibed 
thus far all c o m e  under  our  first definition o f  molecu-  
lar electronics as bulk materials. Al though these sub- 
strates could undoub ted ly  be  pat terned using lithog- 
raphy me thods  similar to those  used in fabricating in- 
tegrated circuits, optical diffraction w o u l d  limit detail 
to scales substantially larger than individual molecular  
assemblies. Such devices w o u l d  not  realize the ultimate 
in miniaturization of  individually assignable devices 
inherent  in molecular  electronics of  the second  defi- 
nition, whereas  individual molecular  assemblies w o u l d  
lack the un ique  addressability and specific connectivity 
be tween  c o m p o n e n t s  c o m m o n l y  associated with elec- 
tronic circuits. Nevertheless, it is interesting to consider  
h o w  it might  be  possible to construct true molecular  
circuits, as well  as the dual p rob lem at the molecular  
level of  h o w  such devices could be  addressed and  
read. Atomic p robe  mic roscopy  could potentially be  
used  to manipulate  and assemble molecules  as a means  
o f  construct ing devices, as well  as a means  of  setting 
molecular  states or  reading ou t  information [53"]. The 
limitations of  manipulat ing only  one  or  a few com-  
ponents  at a time, however ,  wou ld  seem ultimately 
to defeat the objectives o f  creating a molecular  de- 
vice. Alternatively, it may  be  possible to 'condit ion '  
a preexisting molecular  lattice of  uniformly intercon- 
nected  molecules  so that it is able to store or  process 
information as a neural ne twork  analog. Informat ion 
process ing using a distributed approach  requires each 
molecu la r - a s sembly  to sense  the state of  its near- 
est ne ighbors  and  alter its configurat ion accordingly. 
With phas ing to an external clock, this s cheme  has the 
formal structure o f  a cellular au tomaton  operat ing with 
individual macromolecules  as building blocks.  In such 
a highly coopera t ive  device, it may  not  be  necessary 
to manipulate  individual molecules  directly, but  utilize 
intermolecular  communica t ions  c o m m o n  to many  co- 
operative multimeric proteins to per form some  analog 
comput ing  function. Fabrication possibilities also exist 
using defect  tessellation automata  [54"], where  very  
complicated structures can be  generated by  defect 
introduct ion into a periodic lattice subject to a regu- 
lar site rep lacement  protocol.  Although presently only  
the subject of  compute r  simulation, it seems possible 
to e m b o d y  the required propert ies in l igand-capture 
and  displacement  schemes using symmetr ic  protein 
molecules  with multiple b inding  sites. Access and read- 
out  could potentially be achieved by  any of  the meth-  
ods outl ined above.  While these devices are presently 
whol ly  conceptual ,  and m a y  ultimately be  limited by  
molecular  noise that will necessitate distributed or re- 
dundan t  process ing to ensure  reliability, it seems clear 

Conclusion 

Practical application of  eng inee red  proteins in molec- 
ular electronics and sensor  materials applications are 
clearly on  the near  horizon.  Protein molecules  repre- 
sent  the ultimate miniaturization possible in individual 
devices  w h o s e  state can potential ly be control led inde- 
p e n d e n t  of  its neighbors.  This property,  together  with 
the emergence  of  a knowledge  base al lowing protein 
propert ies  and interaction specificity to be  engineered  
with relative ease, will u n d o u b t e d l y  lead to progres-  
sively more  sophisticated assemblies, w h o s e  functional 
limitations can only  n o w  be guessed  at. Multidisci- 
plinary programs such as those  in the Soviet Union  that 
p ionee red  deve lopment  o f  bac te r iorhodops in  based 
devices  [1",3], or  the Frontier Research Program of the 
Riken Institute in Japan  [55"], represent  focused  efforts 
to realize the potential of  this technology.  
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