
REVIEWS

Genomic and proteomic approaches to the identifica-
tion of new targets for drug intervention present
unprecedented opportunities for the discovery of new
agents with novel therapeutic modes of action1.
Nevertheless, some daunting difficulties and risks will
need to be overcome to realize this potential.
Historically, the proteins that the pharmaceutical indus-
try has targeted for drug discovery have generally been
well understood from a mechanistic and biological
standpoint. By contrast, relatively little or nothing
might be known about the mechanism or biological
function of a ‘genomics’ target, which might be rendered
interesting in the first instance simply by virtue of its
appearance in a disease context or apparent effects in a
shotgun gene-knockout experiment. So, genomics-
based target discovery is typically followed by a laborious
process of target validation, which generally produces
useful, although often ambiguous, information about
the potential therapeutic relevance of the target.

An alternative, ‘chemogenomics’ approach to target
validation uses the basic information that is provided by
the target sequence to make the protein and subse-
quently discover a small-molecule ‘tool compound’ that
interacts with that target. The tool compound can in
turn be evaluated in a biological disease model to
directly test a therapeutic hypothesis. This approach can
be implemented as a highly parallel process, and is

particularly well suited to the discovery of drugs in
broad families, in which inter-target specificity might be
a crucial factor in the ultimate development of thera-
peutic agents with minimal side effects. Although this
chemistry-orientated approach does not eliminate the
need for biological target validation, it defers the
required investment to a later stage in the discovery
cycle, when these resources can be deployed more
efficiently and with a higher probability of success. In
this article, we describe a chemogenomics strategy for
drug discovery, and overview the key role of chemi-
informatics in this approach.

A chemogenomics strategy for drug discovery 
A practical and cost-effective embodiment of a
chemogenomics strategy for isolated molecular targets
is outlined in FIG. 1 (REFS 2–5). Gene sequences for targets
that have been identified by genomics approaches (FIG. 1a)

are cloned and expressed as target proteins (FIG. 1b) that
are suitable for screening with a PROBE LIBRARY of small,
drug-like chemical compounds (FIG. 1c). These com-
pounds are screened to find active hits using a quanti-
tative, universal binding assay (FIG. 1d) that has a wide
dynamic range and does not require the development
of custom protocols or reagents. Initial hits or quanti-
tative structure–activity data that emerge from the bind-
ing assay are analysed (FIG. 1e), and are used to formulate
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PROBE LIBRARY

A collection of diverse
compounds that is aimed at
discovering hits across a wide
variety of biological targets.



MULTIOBJECTIVE

OPTIMIZATION

The solution to a problem that
involves the simultaneous
optimization of multiple design
objectives.
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approach uses fluorescence-based detection of protein
thermal stability, both as a means to ensure integrity of
protein folding, and as a means to screen hits and
optimize lead compounds. The method approximates
measurements that are made using differential scanning
calorimetry (DSC), but unlike DSC, it has been devel-
oped in a highly miniaturized format that is suitable for
rapid, high-throughput screening of large chemical
libraries. It is based on the biophysical observation that a
ligand that is bound to a protein stabilizes the protein
native state by an amount that is proportional to its
binding affinity, and, consequently, causes the protein to
melt at a higher temperature. Because the method
measures intrinsic binding affinity, it can be used with
virtually any soluble protein or receptor. The observable
range of accessible melting temperatures allows detec-
tion of compounds that bind in the 10 µM to nM range
in a single measurement, making the method suitable
for the assessment of target ‘drugability’, lead identifica-
tion and lead optimization.

Of course, a potent, non-toxic and bioavailable lead
compound might not emerge directly from the existing
probe libraries and/or their virtual analogues.
Depending on the chemistry involved, directed libraries
typically exhaust readily available reagents within a few
iterations, and — for the most promising cases — are
followed up by second- and third-generation iterable
custom libraries that are specifically tailored to the target
under investigation.

a selection strategy for the synthesis of further com-
pounds with improved properties. These compounds
are selected from a computer database of synthetically
accessible analogues of the initial probe library (FIG. 1f),
which is constructed using verified synthetic protocols
and is characterized by an extensive set of computed,
drug-related molecular properties. The selected com-
pounds are synthesized by parallel-synthesis methods
(FIG. 1g), and are subsequently tested (FIG. 1d) to elaborate
the structure–activity profile of the target under investi-
gation, and to refine the selection criteria for further
rounds of chemical synthesis and biological testing. In
each iteration, priority is assigned to the synthetic
candidates using a MULTIOBJECTIVE OPTIMIZATION process
that is designed to ensure that compounds are not only
optimized for target binding affinity, but also have drug-
like characteristics that will allow them to be used
directly as tool compounds in appropriate cellular or
biological model systems (FIG. 1h).

To implement this process in an efficient and practical
manner, several novel technological components must
be developed and optimized, including: first, a quanti-
tative, universal assay system; and second, a compre-
hensive chemi-informatics platform to provide process
control and decision support for lead discovery and
optimization. A powerful universal assay system that
simplifies initial target characterization (for example,
for proper three-dimensional folding) and the develop-
ment of screening assays was recently described6. This

Figure 1 | A practical and cost-effective embodiment of a chemogenomics strategy. a,b | Gene sequences for targets that
have been identified by genomics approaches are cloned and expressed as target proteins that are suitable for screening with 
c | a probe library of small, drug-like chemical compounds. d | These compounds are screened to find active hits using a
quantitative, universal binding assay. e | Initial hits or quantitative structure–activity data that emerge from the binding assay are
analysed and used to formulate a selection strategy for the synthesis of further compounds with improved properties. f | These
compounds are selected from a computer database of synthetically accessible analogues of the initial probe library, g | synthesized
by parallel-synthesis methods, and d | tested to elaborate the structure–activity profile of the target under investigation and to refine
the selection criteria for further rounds of chemical synthesis and biological testing. In each iteration, priority is assigned to the
synthetic candidates using a multiobjective optimization process that is designed to ensure that compounds are not only optimized
for target binding affinity, but also have drug-like characteristics that will allow them to h | be used directly as tool compounds in
appropriate cellular or biological model systems. HTS, high-throughput screening; SAR, structure–activity relationship.
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And what are the most effective ways to design, execute
and analyse a combinatorial-chemistry experiment?
Fortunately, combinatorial libraries are not random
collections of molecules, but have a highly constrained
intrinsic structure.An effective chemi-informatics system
must capitalize on this structure and defer any form of
computation until it is absolutely necessary. The remain-
ing sections address the questions above — providing a
general overview of the current state-of-the-art in com-
puter-assisted library design — and describe some recent
advances that allow rapid analysis of combinatorial com-
pounds without necessitating their virtual synthesis.
More detailed reviews can be found elsewhere7–12.

Virtual-library generation
The construction of a virtual COMBINATORIAL LIBRARY

involves three basic steps: reaction encoding, selection of
reagents and ENUMERATION. Two approaches are com-
monly used (FIG. 2). The first is based on the use of a
Markush structure, which represents a common scaf-
fold with variation sites labelled as R-groups, each of
which is associated with a list of alternatives13. In this
case, the virtual library is assembled by systematic
attachment of CLIPPED REAGENTS to the respective variation
sites of the core scaffold. Although enumeration is
reduced to simple concatenation of the corresponding
CONNECTION TABLES, the lists of clipped reagents must be
carefully constructed from the monomers by removing
the parts of the structure that are discarded during the
reaction. Moreover, this ‘fragment-making’ approach is
not suitable for reactions that cause modification of the
building blocks, such as the Diels–Alder reaction, or
oligomeric libraries for which the core scaffold is poorly
defined (for example, peptide and peptoid libraries).

A more flexible approach encodes a reaction as a
chemical ‘transform’14,15. The transform specifies the
parts of the reacting molecules that undergo chemical
transformations and the nature of these transforma-
tions. This approach mimics more closely the steps that
are involved in actual synthesis, does not require a com-
mon template or the generation of clipped reagents, and
can be applied to a broad spectrum of chemical reac-
tions. It is important that the reaction language accom-
modates multicomponent reactions, ring cyclizations,
protecting-group removal and core-structure modifica-
tion, and offers the ability to specify multiple products,
designate stereochemistry and differentiate functional-
group reactivity if a reagent has more than one potential
reactive site15.

In order to be scalable, virtual-library generation
should avoid explicit enumeration and storage of every
product unless it is specifically requested, and should be
able to access any desired structure in a rapid time frame.
This approach is often referred to as ‘LAZY’ (or implicit)
ENUMERATION. Different implementations vary greatly in
their storage requirements and enumeration speeds.
Performance can be enhanced through careful algo-
rithmic design — for example, by compiling product-
assembly instructions into machine code, circumventing
explicit generation of intermediates, pre-storing key
MOLECULAR-PERCEPTION flags to be used for subsequent

The role of chemi-informatics
The potential for improved performance using the
strategy outlined in FIG. 1 lies in the ability to rapidly
follow up on initial hits through intelligent selection
of related compounds from a computer database (or
VIRTUAL LIBRARY) of synthetically accessible analogues with
predefined synthesis recipes and predicted property
profiles. This approach introduces a high level of par-
allelism and process automation at all stages of the
design, synthesis, quality control and testing of com-
pounds. Experience indicates that, to address the full
spectrum of targets emerging from genomics-based
target-identification efforts, it will be necessary to physi-
cally screen probe libraries that span a wide range of
chemotypes and contain hundreds of thousands of
compounds. These libraries will derive from synthetic
strategies that could, in theory, produce billions of
related analogues, which far exceeds the capabilities of
conventional chemical-database management systems
and data-modelling tools.

This raises several important questions. How can
huge combinatorial libraries be generated, represented,
accessed, searched and manipulated? What are the most
appropriate chemical-property spaces, and how can they
best be computed, sampled, visualized and validated?
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Figure 2 | Virtual-library generation. Two approaches are commonly used for generating virtual
libraries. a | The first is based on the use of a Markush structure, which represents a common
scaffold with variation sites labelled as R-groups, each of which is associated with a list of
alternatives. b | The virtual library is assembled by systematic attachment of clipped reagents to
the respective variation sites of the core scaffold, shown here using the example of the synthesis
of aminothiazoles from thioureas and α-bromoketones. Although enumeration is reduced to
simple concatenation of the corresponding connection tables, the lists of clipped reagents must
be carefully constructed from the monomers by removing the parts of the structure that are
discarded during the reaction. c | A more flexible approach, again illustrated by using the
synthesis of aminothiazoles, encodes a reaction as a chemical transform, which specifies the
parts of the reacting molecules that undergo chemical transformations and the nature of these
transformations. Adapted from REF. 13.

VIRTUAL LIBRARY

A computer representation 
of a collection of chemical
compounds.

COMBINATORIAL LIBRARY

A collection of compounds that
are derived from the systematic
application of a synthetic
sequence on a prescribed set of
building blocks.

ENUMERATION

The process of constructing the
connection tables of the
combinatorial products from
their respective building blocks,
as prescribed by the reaction
sequence.

CLIPPED REAGENT

The (potentially modified) part
of a reagent that becomes part 
of the final product.

CONNECTION TABLE

A computer representation of
the atoms and bonds that
comprise a molecule. This is the
computer equivalent of a
chemical sketch of a molecule.
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constitutional, branching and ring character of a mole-
cule, and focus predominantly on topology20 (for
example, molecular-connectivity indices, which include
size, saturation, hetero-atom content, topological shape
and symmetry, and counts of characteristic subgraphs,
such as rings, paths, clusters and so on); descriptors
that represent abstract patterns that are discovered by
systematic traversal of the molecular graph (for example,
hashed FINGERPRINTS21); descriptors that represent occur-
rences of specific atom types or functional groups that
are chemically or biologically important (for example,
substructure keys, atom and fragment counts22, and
topological PHARMACOPHORES23); descriptors that incor-
porate atomic properties that are relevant in ligand
binding and DRUG LIKENESS, such as volume, hybridization,
partial atomic charge, electronegativity, polarizability,
hydrophobicity and hydrogen-bonding potential (for
example, atom pairs24, topological torsions25,26, auto-
correlation functions27,28 and approximate surface-area
descriptors29); and global physicochemical properties,
such as molecular weight, LOG P, molar refractivity and so
on30. The numerical representation can be a vector of
binary, integer or real numbers, and the underlying
mathematics range from simple counting schemes22 to
complex matrix-diagonalization routines31. Once the
space is established, molecular similarity is defined using
a distance function that is appropriate for the under-
lying data representation (for example, Euclidean dis-
tance in real space, Tanimoto coefficient in binary space
and so on). One-dimensional and two-dimensional
descriptors can usually be computed very quickly, and
have a successful history in similarity searching and
structure–activity correlation. This success is often attrib-
uted to the fact that they seem to provide the right level
of chemical ‘resolution’ — they are general enough to
relate compounds in diverse chemical classes, but specific
enough to distinguish between closely related analogues.

Three-dimensional descriptors attempt to capture
three-dimensional shape and functionality, which have
an important role in the recognition of drugs by macro-
molecules. Examples of such descriptors include geo-
metric atom pairs and topological torsions32, spatial
autocorrelation vectors33, WHIM indices34, molecular
hashkeys35, BCUTs36 and pharmacophore finger-
prints37–40. The pharmacophore is typically represented
as a set of three or four pharmacophore centres that
form a triangle or tetrahedron. These centres include
macromolecular recognition sites, such as charged cen-
tres, hydrogen-bond donors and acceptors, hydrophobic
centres and aromatic-ring centres. To generate the key, the
pharmacophores (that is, the pharmacophoric centres
and their respective distances) that are exposed by a par-
ticular conformation are mapped onto specific bits in a
bitmap (or fingerprint). Individual fingerprints can be
combined into ‘molecular fingerprints’, which represent
the union across all conformations of a particular mol-
ecule, and ‘library fingerprints’, which represent the
union across all molecules in a library.

Three-dimensional descriptors can be derived from a
single or multiple conformers, the latter being generally
more realistic in representing the similarity or diversity

computational tasks and so on. The most advanced
implementations can reach enumeration speeds in
excess of 20,000 products per second, and can compress
a one-billion-member library into a 1–5-MB data
stream in just a few seconds on a modern PC15.

Although synthetic accessibility cannot be guaran-
teed for every possible combination of reactants, careful
reagent filtering can minimize the probability of gener-
ating compounds that cannot be synthesized or are
unstable, and can considerably reduce the size of the
virtual library. Typical filters include substructural
screens that check for the presence of interfering func-
tional groups or other non-drug-like structural patterns
(see below)14,16. Reagent filtering is computationally
efficient, and is typically followed by visual inspection
and, if necessary, further manual pruning.

Appropriate chemical spaces
Molecular descriptors. Screening-library design has
traditionally been guided by MOLECULAR DIVERSITY17, which
basically represents a generalization of the concept of
molecular similarity from individuals to collections.
Molecular similarity is typically quantified by a numeri-
cal index that is derived either by direct computation, or
by the measurement of a set of characteristic features
(descriptors) that are subsequently combined using a
dissimilarity or distance measure18. Three types of mole-
cular descriptor are in common use: one-dimensional
descriptors, which encode chemical composition; two-
dimensional descriptors, which encode chemical topol-
ogy; and three-dimensional descriptors, which encode
three-dimensional shape and functionality19.

The first two categories are computed directly from
the connection table, and combine elements of GRAPH

THEORY with some form of chemical knowledge. One-
dimensional and two-dimensional descriptors can be
further classified into: descriptors that capture the

LAZY ENUMERATION

The on-demand virtual
synthesis of combinatorial
products.

MOLECULAR PERCEPTION

The computational detection of
important structural features,
such as rings, aromaticity,
stereochemistry and topological
symmetry, from the molecule’s
connection table.

MOLECULAR DIVERSITY

The chemical-information
content of a collection of
compounds. The concept is
often context dependent.

GRAPH THEORY

Formally, a connection table for
a molecule records its chemical
structure as a graph — a set of
vertices (the atoms) linked by
edges (the bonds). This allows
mathematical analyses to be
used to classify the structure or
calculate molecular properties.

FINGERPRINT

A set of binary numbers (1s and
0s) that are used to characterize
a molecular structure. Each bit
signifies the presence (1) or
absence (0) of one or more
structural features in the target
molecule.

Figure 3 | Representative chemical classes in the 3DP probe library. Representative
chemical scaffolds that comprise the probe library of 3-Dimensional Pharmaceuticals (3DP). 
The library contains many pharmacophoric and target-family motifs, including G-protein-coupled
receptors (GPCRs), proteases, nuclear hormone receptors (NHRs), ion channels and so on.
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used44. Explicit three-dimensional approaches45,46,
including receptor docking47,48, are more appropriate
for filtering relatively small collections (~105 com-
pounds, although more scalable methods have been
described49), and are applicable only to targets with
known (or predictable) structures.

Efficient navigation of chemical space requires that
the relationships between compounds be represented in
an intuitive manner that is easily understood by the
chemist involved in a drug-optimization programme.
The diversity of chemical space encourages the use of
large descriptor sets to provide adequate structural
and/or biological discrimination. However, the more
descriptors that are used to describe the data, the greater
the likelihood that they are correlated. Redundant
variables can be a serious threat in many data-mining
applications: they can distort similarities by over-
emphasizing certain molecular characteristics at the
expense of others, cause over-fitting in QSAR (quanti-
tative structure–activity relationship) modelling,
increase storage and computing requirements, and even
limit the number of available analysis options.
Dimensionality-reduction techniques fall into two
broad categories: first, methods that preserve some of
the original descriptors (such as fast random elimina-
tion of descriptors50, cluster significance analysis51 and
information theory52); and second, methods that gen-
erate alternative latent features that are based on the
original descriptors. The latter can be accomplished
using linear methods, such as principal-components
analysis53, singular-value decomposition54,55 and factor
analysis56, and nonlinear methods, such as multi-
dimensional scaling57 (MDS) and nonlinear mapping58

(NLM). Linear methods transform a set of vectors that
are described by partially cross-correlated variables into
a smaller number of orthogonal variables. By contrast,
nonlinear methods attempt to extract low-dimensional
representations that preserve the relationships of the
original data objects. MDS is particularly valuable,
because it can also be used to produce Cartesian coordi-
nate vectors from data that are supplied directly in the
form of proximities, which simplifies their analysis using
conventional statistical and data-mining techniques.
Although MDS is a computationally intensive proce-
dure, a recently published technique that involves the use
of neural networks allows the scaling of data sets that are
orders of magnitude larger than those that are accessible
with conventional algorithms59. This general strategy
was subsequently extended to use local learning tech-
niques60, generalized to handle complex distance func-
tions and input data supplied in non-vectorial form61,
and modified to allow the scaling of combinatorial
libraries in a way that circumvents explicit enumeration62

(see below).

Assessing diversity. Diversity-profiling techniques fall
into three general categories: first, cell-based methods,
which divide chemical space into (hyper)rectangular
regions and measure the occupancy of the resulting
cells; second, variance-based methods, which measure
the degree of correlation between the pertinent features

of a set of compounds. However, their use for analysing
combinatorial libraries is limited by computational com-
plexity, difficulties arising from conformational flexi-
bility, and information loss that occurs when the
descriptors of the individual conformations are com-
bined to produce the descriptors of the ensemble.
Several substituent-based methods have been devised to
address some of these shortcomings, but they are typi-
cally based on the assumption that the conformations
that are adopted by a particular substituent do not
depend on the other substituents or the scaffold, which
is not always valid41–43. More importantly, these descrip-
tors are specific to a particular library and cannot be
used for cross-library comparisons. Experience indi-
cates that many three-dimensional features are captured
implicitly when a fairly comprehensive set of one-
dimensional and two-dimensional descriptors are

PHARMACOPHORE

The ensemble of steric and
electronic features that are
necessary to ensure optimal
supramolecular interactions with
a specific biological target and to
trigger (or block) its biological
function. Only molecules that
interact at the same receptor site
in the same way share a common
pharmacophore.

DRUG LIKENESS

The thesis that drugs have
certain common properties that
differentiate them from other
ordinary chemicals.
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Figure 4 | Diversity and drug likeness of the 3DP probe library. a | Three-dimensional, nonlinear
map of ~200,000 compounds that comprise the probe library of 3-Dimensional Pharmaceuticals
(3DP). The map is constructed in such a way that the distances between the compounds on the
map approximate as closely as possible to the corresponding similarities of the respective
compounds. Each structural class (scaffold) is highlighted with a different colour, and was designed
to be both internally and externally diverse (that is, the individual libraries consist of diverse
compounds and complement each other in diversity space). b | Percentage of compounds from
3DP’s probe library, MDDR (MDL Drug Data Report) and the CMC (Comprehensive Medicinal
Chemistry) database that satisfy the Lipinski constraints.
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example, increasing the hit rate of high-throughput-
screening experiments, increasing the clustering and
separation of active from inactive compounds, or con-
structing predictive QSAR models on the basis of histor-
ical structure–activity data74–79) carries substantial risk.
Successful drug development requires that compounds
have many other properties besides potency and
specificity. Indeed, most drug failures are related to
development issues, such as drug solubility, uptake and
distribution, metabolism, pharmacokinetics, toxicity, and
chemical and metabolic stability. Recently, Lipinski et al.80

analysed drugs on the market and developed a simple
set of heuristic rules for determining the solubility and
permeability of compounds that are being considered as
drug candidates — the LIPINSKI RULE OF 5. This study
caused a profound shift in the way in which combinato-
rial libraries are designed, and in some ways gave birth
to the idea of ‘drug likeness’. This concept has subse-
quently been elaborated to establish a broader range of
structural and physicochemical properties that distin-
guish drugs from non-drugs. These characteristics are
determined by analysing large databases of marketed
drugs or advanced clinical candidates, and comparing
them with collections of ordinary chemicals. Models
range from simple, qualitative rule-based systems that
are based on property distributions81, pharmacophore82

and BIOISOSTERIC preferences83, and commonly occurring
substructures84, to more elaborate classification schemes
that are based on unsupervised56 and supervised22,85,86

pattern-recognition techniques, or specific oral-
bioavailability models87. These models can be used to
detect potential ADME (absorption, distribution,
metabolism and excretion) liabilities, and enrich combi-
natorial libraries with compounds that have an
increased probability of leading to a successful preclini-
cal candidate88. In practice, compound selection might
be implemented through a ‘hard’ filter that eliminates
problematic compounds from further consideration16,
or a ‘soft’ bias that skews the selection towards
favourable ADME regions89–93. The latter approach is
supported by a recent review, which noted that three of
the top-selling GlaxoWellcome drugs would be consid-
ered inappropriate by many drug-likeness filters10.

Although debate continues about the optimal size
and diversity that is appropriate for initial screening, our
laboratory has had good overall success by screening
libraries of ~300,000 drug-like compounds based on
~50 underlying chemical scaffolds (FIGS 3 and 4).

Design of experiments
Combinatorial libraries are almost invariably synthesized
in the form of arrays that represent all combinations of a
prescribed set of building blocks. The fundamental
problem in library design is to identify the monomers
that, when combined, will produce the library that best
satisfies a predefined set of objectives. Depending on the
available information, two stages in the design cycle can
be identified: first, lead discovery, which involves the
screening of large, diverse chemical libraries in search of
novel hits; and second, lead optimization, which
involves the synthesis of smaller, focused libraries that

of molecules; and third, distance-based methods, which
express diversity as a function of the pairwise molecular
dissimilarities.

Cell-based methods encode absolute position in
space, and can typically be computed very quickly.
Several cell-based diversity functions have been pro-
posed, ranging from simple counts of occupied cells
to more elaborate measures36,63. Cell-based methods
can be applied only to data spaces of modest dimen-
sionality (typically no more than five or six), are sensi-
tive to OUTLIERS, and have other limitations related to
the CURSE OF DIMENSIONALITY64.

Variance-based methods65 attempt to find a subset of
compounds with descriptors that show the least possible
correlation, and which can optimally test the signifi-
cance of each descriptor in predicting a relevant depen-
dent variable (for example, biological activity). The
most widely used method is D-optimal design66, but the
results are model dependent, and tend to favour the
extremes of the feature space67.

Distance-based methods are the most general, as
they can work with any measure of molecular similar-
ity and do not require a vectorial representation of
chemical space. They can be used to produce ‘spread’
designs, which attempt to maximize the distances
between the selected compounds to eliminate redun-
dancy, or ‘coverage’ designs, which attempt to maxi-
mize representativeness68–71. Their main disadvantage is
their QUADRATIC COMPLEXITY, but this problem can be alle-
viated using multidimensional search trees72 or proba-
bilistic approaches that measure the distributions of
intermolecular dissimilarities73.

Drug likeness. Choosing descriptors and diversity metrics
solely on the basis of early-stage discovery objectives (for

LOG P

The octanol/water partition
coefficient is the ratio of the
compound’s solubility in
octanol to its solubility in water.
The logarithm of this partition
coefficient is called log P.
It provides an estimate of the
compound’s ability to pass
through a cell membrane.

OUTLIER

A point that, because of
observation noise, does not
follow the characteristics of the
input (or desired response) data.

CURSE OF DIMENSIONALITY

The sparsity of data in higher
dimensions.

QUADRATIC COMPLEXITY

Quadratic complexity means
that if the size of the problem
doubles, the computational time
that is required by the algorithm
to solve it quadruples. The
complexity (or order) of an
algorithm is an important
criterion for comparing
algorithms that involve the
analysis of large data sets.

Initial hits – 120 compounds

Second round – 17 compounds
3DP-xxxxxx: Kd ~600nM

First round – 52 compounds

Figure 5 | Iterative library design. Exemplary application of the approach that is outlined in FIG. 1

on a proprietary target. The process begins by screening the probe library (or any diverse subset
thereof) against the target, and designing increasingly focused arrays around the most promising
hits to emerge from the screens. Depending on the number and quality of the hits, the selection
of the compounds for the next iteration might be based on molecular similarity or formal statistical
structure–activity models. The number of compounds that are synthesized in each iteration
ranges from a few tens to a few thousands.



NATURE REVIEWS | DRUG DISCOVERY VOLUME 1 | MAY 2002 | 343

R E V I E W S

is considered independently of all the others66,94; and
product-based design, for which the selection is ulti-
mately based on the properties of the enumerated
products. The latter is generally the method of
choice95,96, but, until recently (see below), it was believed
to be applicable to only explicitly enumerated libraries
of relatively small size.

The selection problem can be viewed as a heuristic
search for which each state in the search space repre-
sents a particular subset of the virtual library. Design
strategies include clustering or partitioning methods,
greedy optimization heuristics, and advanced stochastic
optimization schemes. Clustering methods divide the
population into disjointed sets, and select several repre-
sentatives from each set97,98. Greedy algorithms carry out
the selection in a stepwise manner by making decisions
that make sense at the time without regard for future
consequences. Such methods include forward selection,
backward elimination and greedy replacement65, and
other variants that have been specifically tailored for
combinatorial arrays99,100. Depending on the scale of the
problem and the complexity of the cost function, these
algorithms can be prohibitively slow and often converge
to suboptimal local minima.

Stochastic algorithms attempt to circumvent the
multiple-minima problem by allowing the generation
of successor states that might be inferior to their pre-
decessors. Several methods have been investigated,
including simulated annealing101–106, genetic algo-
rithms90,107–111 and particle swarms112. These methods
can accommodate virtually any conceivable design cri-
terion, including diversity, similarity to known active
compounds, predicted activity and/or selectivity as
determined by a QSAR or receptor-binding model,
enforcement of drug-like property distributions, reagent
cost and availability, and many others. Examples of
how these criteria can evolve as a function of time, and
how multiple design objectives can be optimized simul-
taneously, are illustrated in FIGS 5 and 6, respectively.

Beyond enumeration
Descriptor calculation for explicitly enumerated com-
pounds typically proceeds at a rate of a few hundred
compounds per second (at best), and can be used with
only small or medium-sized virtual libraries. Two differ-
ent approaches have been devised to address this prob-
lem. The first is to perform selective enumeration, and
the second is to use descriptors that do not require
explicit construction of the connection tables of the
products. An example of the former strategy is the simi-
larity-searching algorithm that is outlined in REF. 113.
The algorithm is based on the observation that the
structural diversity of a combinatorial library stems
from a limited number of building blocks, so that it is
possible — through random sampling — to identify
reagents that lead to products that are most closely
related to the query structure. This algorithm provides
optimal or nearly optimal solutions in rapid time
frames, but is applicable to only a relatively narrow class
of optimization tasks (mainly similarity searching and
other types of focused design).

are designed to explore the structure–activity space
around these hits.

In either case, library design is a complex task that
requires the simultaneous optimization of multiple,
frequently conflicting objectives. There are no formal
rules for setting these objectives, and the decision often
involves a mixture of mathematics and chemical intu-
ition. Regardless of the specific goals, monomer selection
is a COMBINATORIAL OPTIMIZATION problem of formidable
proportions. Two different approaches have been devel-
oped: reagent-based design, in which each variation site

LIPINSKI RULE OF 5

For compounds that are not
substrates of biological
transporters, poor absorption
and permeation are more likely
to occur when there are more
than 5 hydrogen-bond donors,
more than 10 hydrogen-bond
acceptors, the molecular mass is
greater than 500 Da, or the log P
is greater than 5.
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Figure 6 | Multiobjective library design. Multiobjective selection of a 20×20 combinatorial array
from a 300×300 virtual library based on the reductive-amination reaction. The selection was
designed to simultaneously maximize molecular diversity, satisfy matrix-synthesis constraints 
and enforce drug-like molecular weight and log P distributions. a | Nonlinear map that represents
diversity space. b | Molecular-mass distribution of selected compounds plotted against that of
known drugs. c | Log P distribution of selected compounds plotted against that of known drugs.
Reproduced from REF. 91 © (2000) with permission from Elsevier Science.
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descriptors of the corresponding reagents and feeding
them through the neural network.As it is not possible to
know a priori which reagent descriptors are most relevant
for a particular learning task, the training process is often
guided by a FEATURE-SELECTION algorithm, such as simulated
annealing, evolutionary programming or some other
alternative. This approach limits the expensive enumera-
tion and descriptor calculation to only a small fraction of
products (the training set), and can estimate the descrip-
tors of most of the compounds in the virtual library with-
out generating their connection tables. More importantly,
it does not require the use of clipped reagents, and can be
applied to a wide range of molecular properties regardless
of origin and complexity with minimal programming
effort. In essence, the method encodes complex computer
programs in the synaptic parameters of a neural network,
and allows descriptor calculations for virtual libraries at a
rate of hundreds of thousands of compounds per second.

This approach is broadly applicable, and can be easily
extended to predict latent variables, such as principal
components or nonlinear map coordinates62, and other
complex molecular properties that require a much more
substantial effort to compute than simple chemical
descriptors (for example, ADME-related physico-
chemical properties, such as log P, pKa, solubility, dock-
ing scores and so on; D. K. A. and V. S. L., unpublished
observations).

Concluding remarks
Realizing the potential benefits of the genomics revolu-
tion, and particularly the potential to tailor new drugs
to specific genotypic backgrounds, will require signifi-
cant advances in the efficiency with which new drugs
are discovered and developed. The clear path is one that
actively incorporates any and all of the information that
is required to specify the ultimate development com-
pound throughout each stage of its evolution — from
initial screening-library design to final clinical-candidate
optimization and ADME refinement. In this article, we
have described a set of chemi-informatics tools aimed
at library design for general screening and early-stage-
compound optimization that are based primarily on
the measured binding properties and statistically
observed ADME profiles of known marketed drugs. We
note, however, that the underlying approaches that have
been developed are readily geared to the incorporation
of a much more diverse array of both experimental
high-throughput ADME data to better address clinical-
development issues, and pharmacogenomics data to
better match drug properties and patient genotype.
Indeed, the prime motivation for the development of
highly efficient chemi-informatics tools for drug dis-
covery lies not in the process as it is perceived at pre-
sent, but in the need to build flexible and scalable
informatics tools to accommodate the expansion in
both the available chemistry and the diversity of ADME
and pharmacogenomics data. Incorporation of such
data can productively focus the discovery and develop-
ment process, and probably defines the only systematic
course to economically creating medicines that are 
tailored to specific genotypes.

The alternative approach is to use ‘decomposable’
descriptors, which can be computed in an additive or
nearly additive manner from the corresponding descrip-
tor values of the clipped reagents114–116. Although the
products need not be assembled, the most useful
descriptors are not additive, and are therefore not
amenable to this approach. So, both of the aforemen-
tioned approaches limit either the types of selection that
can be carried out, or the types of descriptor that can be
used in the design.

Recently, however, there has been evidence that
direct calculation of descriptors might be unnecessary117.
Indeed, it was found that most of the descriptors that are
commonly used in library design can be estimated accu-
rately from properties of their respective building blocks,
including non-decomposable descriptors that cannot be
computed by simple addition of fragment contributions.
The approach that is outlined in REF. 117 attempts to con-
struct models that are specific to a particular library and
a particular descriptor (or set of descriptors), and use
those models to generate approximate descriptors ‘on the
fly’, as needed by the application.

This approach requires a training set, which consists of
the descriptors of all the reagents that make up the com-
binatorial library, along with the properties of a relatively
small number of randomly chosen products. The latter
are computed in a conventional way; that is, by running a
computer program or subroutine on the fully enumer-
ated structures. These data are then used as input to a
COMBINATORIAL NEURAL NETWORK (CNN) (FIG. 7), which is
trained to predict the properties of the products from the
pre-computed descriptors of their respective building
blocks. Once the network is trained, properties of other
products can be calculated by simply extracting the
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SUMMARY

• A practical and cost-effective embodiment of a chemogenomics
approach to drug discovery involves the following steps:

• Gene sequences for targets that have been identified by
genomics approaches are cloned and expressed as target pro-
teins that are suitable for screening with a probe library of
small, drug-like chemical compounds.

• These compounds are screened to find active hits using a
quantitative universal binding assay.

• Initial hits or quantitative structure–activity data emerging
from the binding assay are analysed and used to formulate a
selection strategy for the synthesis of additional compounds
with improved properties.

• These compounds are selected from a computer database of
synthetically accessible analogues of the initial probe library,
constructed using verified synthetic protocols and character-
ized by an extensive set of computed drug-related molecular
properties.

• The selected compounds are synthesized by parallel-synthesis
methods and are subsequently tested to elaborate the struc-
ture–activity profile of the target under investigation, and
refine the selection criteria for additional rounds of chemical
synthesis and biological testing.

• In each iteration, priority is assigned to the synthetic candi-
dates using a multiobjective optimization process designed to
assure that compounds are not only optimized for target
binding affinity, but also have drug-like characteristics that
will allow them to be used directly as tool compounds in
appropriate cellular or biological model systems.

• The potential for improved performance using such a strategy lies in
the ability to rapidly follow up on initial hits through intelligent selec-
tion of related compounds from a computer database of synthetically
accessible analogues with predefined synthesis recipes and predicted
property profiles.

• To address the full spectrum of targets emerging from genomics-based
efforts, it will be necessary to physically screen probe libraries that span
a wide range of chemotypes and contain hundreds of thousands of
compounds.

• These libraries will derive from synthetic strategies that could, in the-
ory, produce billions of related analogues, which far exceeds the capa-
bilities of conventional chemical-database management systems and
data-modelling tools.
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• Thus, the following key questions need to be addressed:
• How can huge combinatorial libraries be generated, repre-

sented, accessed, searched and manipulated? 
• What are the most appropriate chemical-property spaces, and

how can they best be computed, sampled, visualized and vali-
dated? 

• What are the most effective ways to design, execute and
analyse a combinatorial-chemistry experiment?

• Successful deployment of such a system requires a new generation of
computational tools that work effectively on a massive scale.


