The Development of a Quality Control and Analysis Application for the ThermoFluor® High Throughput Screening Assay

Robert B. Nachbar¹
Delphine Collin²
Jonathan Robinson¹
Thomas J. Mildorf³
Eugen Buehler¹

¹Applied Computer Science and Mathematics
²Automated Biotechnology
³Massachusetts Institute of Technology
Introduction

• Goal: Facilitate and log the work flow for a user analyzing the results from one high throughput screening (HTS) plate that employs the ThermoFluor® assay technology

• Problem: Analysis using vendor supplied software was time consuming and had low quality control due to reliance on user to grade the response of each well

• Solution: Create computerized tool to facilitate the analysis
Background
ThermoFluor®

- Detection of unfolding of cytosolic proteins
- Characterization of specific binders
- Ranking as function of binding strength
- Throughput: 384 well plate, up to 7000 thermograms/24hrs
- High protein consumption: 1mg ~ 1500 samples
ThermoFluor®:
Fluorescent Detection of Protein Unfolding

Dye

Temperature ramping

Native Protein

Unfolded Protein

Protein•Ligand

Unfolded

Folded

$\Delta T_m \propto K_D$
Developing the Requirements
Goals

<table>
<thead>
<tr>
<th>Quality Control</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Obvious problems</td>
<td>• Smooth thermogram</td>
</tr>
<tr>
<td>– spikes</td>
<td>• Calculate gradient, curvature, and critical points</td>
</tr>
<tr>
<td>– high fluorescence</td>
<td>• Calculate (T_m) for each well</td>
</tr>
<tr>
<td>– no obvious transition</td>
<td>• Calculate mean (T_m) for control wells</td>
</tr>
<tr>
<td>• Distorted transition</td>
<td>• Calculate (\Delta T_m) for sample wells</td>
</tr>
<tr>
<td>• Large (</td>
<td>\Delta T_m</td>
</tr>
<tr>
<td>• Multiple transitions</td>
<td>• Audit trail notebook</td>
</tr>
<tr>
<td>• Check whole plate for unusual patterns</td>
<td></td>
</tr>
<tr>
<td>• User is final authority</td>
<td></td>
</tr>
</tbody>
</table>
Developing the Tools
Import Data from Robot

Use built-in Import function

\[\text{In[1]} := \text{TFD} = \text{Import["C:\nachbarr\Documents\Software\Wolfram Research \src\HTS\testing\ .txt", "ThermoFluor"]} \]

\[\text{Out[1]} = \text{ThermoFluorData[<16, 24>, ControlWells \to <32>, SampleWells \to <352>, EmptyWells \to \}, ValidWells \to \}, InvalidWells \to \}]} \]

ThermoFluorData object returned

Special Format defined that uses skeletons
Smooth Data, Calculate Critical Points and Transitions

In[2]:= TFD = FindCriticalPoints[TFD, Smoothing -> {"SavitzkyGolay[3]", 5},
 TemperatureRange -> {25, 75}]

Out[2]= -ThermoFluorData[<16, 24>, ControlWells -> <32>,
 SampleWells -> <352>, EmptyWells -> {},
 TemperatureRange -> {25, 75}, Smoothing -> {SavitzkyGolay[3], 5},
 SmoothData -> {<51>, <384, 51>, <384, 51>},
 CriticalPoints -> <384>, ValidWells -> {}, InvalidWells -> {}]

User's options and new results are appended

Running list of valid & invalid wells maintained

In[3]:= TFD = FindTransitions[TFD, PseudoMaxMinRelativeGradient -> 0.5,
 TmMinimumRelativeIntensity -> 0.05, TmMinimumRelativeGradient -> 0.25]

Out[3]= -ThermoFluorData[<16, 24>, ControlWells -> <32>,
 SampleWells -> <352>, EmptyWells -> {},
 TemperatureRange -> {25, 75}, Smoothing -> {SavitzkyGolay[3], 5},
 SmoothData -> {<51>, <384, 51>, <384, 51>},
 CriticalPoints -> <384>, Transitions -> <384>,
 PseudoMaxMinRelativeGradient -> 0.5,
 TmMinimumRelativeIntensity -> 0.05, TmMinimumRelativeIntensity -> 0.25,
 NoTmFailed -> <11>, ValidWells -> <373>, InvalidWells -> <11>]-
Spike Filter → Glitch Filter

In[8]:= FilterSpikes[TFD, Thresholds → Automatic]

FilterGlitches[TFD, Thresholds → Automatic]
Thermogram display developed for the user

Experimental data with smooth trace

Well label

Automatic annotation

Relevant critical points highlighted

Gradient determined numerically

$T_m = 57.1$ $\Delta I = 5.3$

$D24$

30.4
User Can Override Automated QC
User Can Choose Among T_m
Lessons

• Statistics could not be used to set thresholds—the errors are not normally distributed.
• Principal components and clustering could not be used to find outliers—too many false positives and false negatives.
• Machine learning classifiers were not successful.
• Heuristics and interactive user input worked.
 – The challenge was to make it efficient!
• Frequent dialog with the users identified simple improvements that made big differences.
• Experimental background of developer facilitated communication with users.
Developing the Application
Original Version of ThermoFluor Analysis in Mathematica Notebook

• First version created in Mathematica allowed for quantitative analysis of ThermoFluor plates

• Users needed to know Mathematica syntax and enter specific commands manually

• A GUI to guide the user is much easier to use

```
ToFileName[{$HomeDirectory}] // SetDirectory;

ToFileName[{$SourceDirectory, "HTS"}, "ThermoFluor.m"] // Get

plateData = Import["..\HDAC2.txt", "ThermoFluor"]

ThermoFluorData[<16, 24>, ControlWells -> <48>, SampleWells -> <295>, EmptyWells -> <41>, ValidWells -> <384>, InvalidWells -> {}]

SetOptions[FindCriticalPoints, Smoothing -> 3, Window -> 2]
SetOptions[FindTransitions, TmRelativeIntensity -> 0.05]

{Smoothing -> 3, Window -> 2}

{TmRelativeIntensity -> 0.05}
```
Outsourcing

- Decision to outsource interface development allowed for internal focus on development and refinement of algorithms for ThermoFluor HTS plate analysis.
- Wolfram’s Accredited *Mathematica* Consultants and Consulting Companies helped find a qualified consultant.
- Formal requirements document allowed consultant to easily scope the work and estimate cost.
- Punch list after delivery and user testing helped resolve all the issues.
- Outsourcing user documentation is not easy.
New Version

• Graphical interface was outsourced
 – Included development of menu to guide users through workflow and some additional windows
 – Graphical interface would allow for much quicker adoption of tool by making it user friendly and reducing training time
• Menu guides users through workflow
Live Demonstration

continue
Workflow Excerpts

Audit trail notebook

Palette to guide user

Buttons for valid next actions are active

Button for logical next action is selected
Lessons

• Reuse of high-level graphics functions in GUI components speeds development.
• Notebook programming for the audit trail is not difficult.
• Some tinkering is needed to get GUI components to appear on user’s display in useful locations.
• *GUIKit* had all the components needed, except one—a customized file name *and* file type dialog was written in Java.
• Evaluations in *GUIKit* palette and audit trail notebook are asynchronous, which permits the user to get ahead of her/himself.
• Logic for workflow control with *GUIKit* is missing some critical pieces.
Conclusions
Benefits to the User

• Time Reduction for Analysis
 – Previous analysis by hand for one 384 well HTS plate took 2 days
 – Using the new software, analysis of a plate can be completed in 30 minutes or less
 – On a 30 plate assay, the estimated time savings is 12 person weeks

• More Consistent Analysis
 – Use of software produces more consistent analysis across all the plates
Acknowledgements

- ScienceOps