Streamlining Assay Development:
Lessons in Process Optimization Through Protein Optimization

James Kranz
Lead Generation Biology

September 22, 2005
Rate Limiting Steps in Lead Generation

- Industry-wide, HTS (pushing plates) is a small part of the total process in Lead Generation.

Can we streamline the upstream components; assay development, validation, & automation?
Multidimensional Biological Approach

- Different assay classes provide complimentary information.

- In Common are general questions related to assay development/optimization.

Cellular & in vivo, assays
- second messenger effects
- upregulation/downregulation
- gene activation/repression
- ADME/Toxicity

Molecular “activity” assays
- inhibition (IC50)
- competitive binding
- ELISAs
- signal transduction pathways
- enzyme mechanisms

Biophysical assays
- structural (X-ray, NMR)
- binding
- thermodynamic
- in silico (predictive) methods
- spectroscopic (CD, Fluor., scattering)
Problems of Protein Stability
Susceptibility of Proteins to Degradation

Chemical, Covalent Degradation:
- Deamination
- Oxidation
- Disulfide bond shuffling

Physical Degradation:
- Protein Unfolding
- Loss through adsorption to Surfaces
- Nonnative Aggregation
Protein Stability by *ThermoFluor®*

Factors Influencing Protein Stability

Temperature:
- Parabolic dependence on ΔG (cold and heat denaturation).
- High Temperature can result in *irreversible unfolding*.

Preservatives (formulation):
- Added to ensure sample sterility.
- Can induce aggregation in the absence of additional stabilizers.

Surfactants:
- Added to prevent aggregation and adsorption to surfaces.
- Can destabilize native protein, while kinetically inhibiting aggregation.

Salt Type and Concentration:
- Complex effects on protein stability, solubility, and aggregation rates.
- Net effect on protein stability is a balance of multiple mechanisms.

Solution pH:
- Determines total charge on a protein.
- *Strong influence* of pH on protein aggregation rates.

Ligands & Cosolutes:
- Compound binding *generally* will stabilize native protein.
- Preferential hydration by cosolutes can prevent unfolding.
Protein Stability by *ThermoFluor®*

Dye-based fluorescence assay of stability

High Temperature drives Unfolding

Native Protein: (physiological Temp)

Native \rightarrow Non-native

ΔG_U

Native \rightleftharpoons Non-native

ΔG_U

Native Protein:

Native protein

dye

dye-bound unfolded protein

$K_{unfold}(T)$

K_{dye}

$heat$

unfolded protein

dye-bound unfolded protein

$heat$
Ligand effect on Thermal Stability

Equilibrium shifts to folded, ligand-bound form

- **Ligand Binding & Unfolding:**
 - ΔG_b
 - $N-X \rightleftharpoons \text{Native} \rightleftharpoons \text{Non-native}$

- **High Temp drives Unfolding**
 - ΔG_U

- **Heat**

- **$K_{bind}(T)$**
 - Bound ligand
 - Native protein

- **$K_{unfold}(T)$**
 - + ligand

- **K_{dye}**
 - dye
 - Unfolded protein

- **Ligand Binding & Unfolding:**
 - dye-bound unfolded protein
 - dye-bound native protein
Detailed Fluorescent Melt Parameters

\[P_U = \frac{1}{1 + e^{-\left(\Delta H_U(T_R) - T\Delta S_U(T_R) + \Delta C_{p,U} \ln(T/T_R) - T\ln(T/T_R)\right) / (RT)}}. \]

- \(\Delta H_U(T_R) \): reference enthalpy at \(T_R = T_m \)
- \(\Delta S_U(T_R) \): reference entropy at \(T_R = T_m \)
- \(\Delta C_{p,U} \): specific heat capacity

At \(T_m \), folded and unfolded states are equally populated \(K_U = 1 \)

\[\text{Signal} = y_U - y_F \]

\(K_U(T) \)

\(h \nu \)

Relative Fluorescence

Temperature (°C)

\(T_m = 65^\circ \text{C} \)

\(y_U \)

unfolded baseline

\(y_F \)

folded baseline

\(y_U - y_F \)
ThermoFluor®
High Throughput Thermodynamic Assay

Plate-based Protein Unfolding

- 384-well assay plate; high throughput characterization and screening of proteins.
- Low volume, 3 µl, small-scale reactions, ~1 µM protein; typically < 200 ng well.
- Each well comprises an individual protein unfolding assay.
- Compound binding free energy adds to protein stability – shifts stability curve to higher temperature.

Optimization for HTS is an optimization of protein stability and signal intensity.

M. W. Pantoliano et al. (2001) J. Biomol. Screen. 6: 429
D. Matulis et al. (2005) Biochemistry 44: 5258
ThermoFluor® in Drug Discovery

- Protein Stability Profiling (PSP)
 - Protein preparation (pH/Salt, excipient effects)
 - Protein crystallography
 - Protein Formulation

- μHTS

- Hit profiling
 - Calculating binding constants
 - Triage of “bad” compounds
 - Secondary hit profiling
 - Inhibition Mechanisms
 - Competition

Stability of b-CAII

\[\Delta T_m \]

\[[\text{NaCl}] = 0 \text{ M} \]
\[\text{pH} \text{ 5.8} \]
\[[\text{NaCl}] = 1 \text{ M} \]

\[0.8 \]
\[7.0 \]
\[10 \]
\[20 \]
Stability Surfaces of Test Proteins
Variation of T_m with pH and NaCl

- Carbonic Anhydrase II
- Thrombin

- Unique stability surface for each protein.
- Profile is a “fingerprint” for a protein sequence, prep, or formulation.
Array-Based Condition Profiling

pH/Salt Characterization:
- 384-well plate based survey of variable pH & salt conditions.
- Varied in conjunction with arrays of buffer type, ±MgCl₂.

“Excipient” Characterization:
- Plate-based survey of secondary buffer components:
 - Comparisons of NaCl, KCl, LiCl, NH₄Cl, etc.
 - MgCl₂ vs. MnCl₂ or CaCl₂; different anions (Cl⁻, SO₄²⁻, PO₄³⁻)
 - Cosolutes (amines), polyols (glycerol), surfactants (tween20)
 - Essential elements; NiCl₂, ZnCl₂, etc.

Ligand Binding & Positive Controls:
- Direct measurement of ligand binding affinity (dosed compounds).
- Comparison of binding under different conditions (e.g. ±MgCl₂).

✓ Captures Protein-specific Effects in Common Set of SOPs
Protein Stability Profiling:
Kinase #1 – pH, Salt, & Buffer effects on stability

- Maximum stability observed ~ pH 6.5
 - Screen optimization
 - protein preparation implications
- Mg$^{2+}$ only affects stability at low ionic strength
- Buffer effects: protein more stable in HEPES than Pi, PIPES
- Protein stability decreased with high [salt]
Kinase#1: Protein Purification challenges

- **Expression/Purification**
 - Expressed as GST-fusion protein
 - Purified off GSH-resin, thrombin cleavage
 - Described procedure suggests handling at pH 8.0
 - < 90% pure
 - Significant quantities of aggregates present

- **PSP suggests**
 - use lower pH
 - use HEPES
 - low ionic strength

50mM Tris pH 8.0
150mM NaCl
1mM DTT
10% Glycerol

< 90% purity

pure protein →

30% soluble aggregate (1.2mg/ml)

Running buffer
50mM PIPES pH 6.5
100mM NaCl
1mM EDTA
1mM DTT
Kinase#1: Protein Purification solutions

- **pH 8.0**
 - higher salt
 - 10% glycerol

- **pH 6.8**
 - lower salt
 - 10% glycerol

- Protein band →

- > 98% purity

Original (Published) Protocol

- 50mM TRIS pH 8.0
- 150mM NaCl
- 1mM EDTA
- 1mM DTT

Revised Procedure

- 50mM PIPES pH 6.8
- 100mM NaCl
- 10% glycerol
- 1mM EDTA
- 1mM DTT

-Aggregate

- Monomer

- Using conditions from PSP
 - altered thrombin cleavage kinetics
 - significantly improved protein purity
 - prevented aggregate formation
Protein Stability Profiling:
Kinase #2 – pH, Salt, & Buffer effects on stability

$pH \pm NaCl \& MgCl_2$

- High Salt stabilizes the kinase domain (also Phosphate Buffer).
- Protein is destabilized by Zinc and by Nickel (also imidazole).
- Combination of NiCl2 & HEPES Buffer used initially in prep.
Kinase #2: Protein Purification Challenges

Original Protocol

Gel filtration analysis of protein eluted from Nickel-NTA column in HEPES buffer.

* peak corresponding to gel fraction.

Revised Procedure

Gel filtration analysis of protein eluted from Talon column in phosphate buffer.

* peak corresponding to gel fraction.

Change of column type minimized exposure of protein to Nickel.
Kinase Protein Stability Profiling

Kinase #1

- **Original conditions:**
 - Tris Buffer, typical salt & reductant, GST-column purification
 - Aggregation was biggest challenge

- **Protein Stability Profile:**
 - pH profile - maximum at pH ~ 6.5
 - Salt profile – prefers low salt, polyols
 - Buffer profile – HEPES preferable to Phosphate, PIPES, MOPS
 - Metals - divalents are destabilizing

- **PSP-Altered Purification:**
 - Changed to HEPES Buffer
 - Added 10% Glycerol to thrombin cleavage & column elution buffer
 - Minimized Aggregation

Kinase #2

- **Original conditions:**
 - HEPES Buffer, typical salt, Nickel-column purification
 - Aggregation was biggest challenge

- **Protein Stability Profile:**
 - pH profile - maximum at pH > 7
 - Salt profile – stabilized by high salt
 - Buffer profile - Phosphate buffers uniquely stabilizing
 - Metals - Nickel is destabilizing

- **PSP-Altered Purification:**
 - Changed to Phosphate Buffer
 - Substituted Talon Column for Ni-NTA column
 - Minimized Aggregation
Enzyme Assay Development
Target Characterization at a Basic Level

Well-studied System
- Establish correct form of enzyme/substrates.
- Signal Optimization.
- Effects of buffer (pH, salt, etc) and temperature on activity.
- Measure Km’s, Kd’s, EC50’s for all substrates & cofactors.
- Measure true Vmax; kcat where feasible.
- Measure Ki’s/IC50’s for known inhibitors.

Poorly-characterized System
(additional work)
- Investigate a minimum set of potential biological substrates.
- Test all known assays.
- Screen additives/ligands to investigate affects on activity.
- Detailed kinetic characterization (establish kinetic mechanism).
- Mechanistic studies for inhibitors and tool compounds (determine true Ki).
Enzyme Assay Development: Streamlined Characterization Approach

Challenging System:

- **Substrates**
 - FMNH$_2$
 - FADH$_2$
 - NADPH

- **Products**
 - FMNH$^-$
 - FADH$^-$
 - NADP$^+$

- **Reductase/Oxidase Activities; multi-step enzyme mechanism.**
- **One of the Products is Transiently Stable – opportunity for capture.**

Signal Optimization
1) Wavelength(s)
2) Rate/Enz. Conc.

Condition Profiling
1) pH & Salt
2) excipients

Optimization for Automation
Enzyme Assay Development:

Rate-based Product Detection Assays

1) Fluorometric Dye; Product Chelation

\[\text{E} + \text{S}_1 \rightarrow \text{E} \cdot \text{S}_1 \rightarrow \text{E} \cdot \text{S}_1^* \cdot \text{S}_2^* \rightarrow \text{E} \cdot \text{P}_2 \]

Dye•P₂

Fluorescence Change

2) Product Capture; Protein Binding

\[\text{E} + \text{P}_1 \rightarrow \text{E} \cdot \text{P}_1 \rightarrow \text{M} \cdot \text{P}_2 \]

M•P₂

Absorbance Change

Dye Chelation Assay:

Variable [Enzyme] - 5 to 1000 nM

Secondary Binding Assay:

Variable [Enzyme] - 5 to 1000 nM
Signal Optimization

Dual Wavelength Absorbance Assay

Abs: Secondary Protein +/- Product

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>340</td>
<td>0.05</td>
</tr>
<tr>
<td>360</td>
<td>0.08</td>
</tr>
<tr>
<td>380</td>
<td>0.1</td>
</tr>
<tr>
<td>400</td>
<td>0.15</td>
</tr>
<tr>
<td>420</td>
<td>0.2</td>
</tr>
<tr>
<td>440</td>
<td>0.25</td>
</tr>
<tr>
<td>460</td>
<td>0.3</td>
</tr>
<tr>
<td>480</td>
<td>0.35</td>
</tr>
<tr>
<td>500</td>
<td>0.4</td>
</tr>
</tbody>
</table>

ΔAbs: Wavelength-difference (400 – 420nm):
- Double Signal of single wavelength.
- Additional Signal Stability.

Secondary Binding Assay:
Variable [Enzyme] - 5 to 1000 nM

<table>
<thead>
<tr>
<th>Time, minutes</th>
<th>Relative Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.02</td>
</tr>
<tr>
<td>10</td>
<td>0.04</td>
</tr>
<tr>
<td>15</td>
<td>0.06</td>
</tr>
<tr>
<td>20</td>
<td>0.08</td>
</tr>
</tbody>
</table>

0.05 μM enzyme
Conditional Effects on Rx Rates

Array-based Approach:

Survey of pH & Salt:
• The activity rates (after 10min) in the
 range are similar from pH 6.0-7.5.
• Initial rates are similar between 100-
 400 mM NaCl

Excipient effects on Rates:
• Increased Activity Rates:
 CaCl₂, MgCl₂, Tween 20
• Significantly Decreased Rates:
 NiSO₄, PEG, imidazole
• Tween20 optimal at 0.01%; DMSO
 tolerated up to 2%

Buffer modified to HEPES, pH7;
 CaCl₂, MgSO₄, Tween, GSH
 added to minimize [Enzyme].
Initial Automation Uniformity Tests

Zprime vs [Enzyme] – 10 min. endpoint read (384):

<table>
<thead>
<tr>
<th>[Enzyme]</th>
<th>Signal Mean</th>
<th>Signal Std</th>
<th>BG Mean</th>
<th>BG Std</th>
<th>Signal:BG</th>
<th>Zprime</th>
</tr>
</thead>
<tbody>
<tr>
<td>60nM</td>
<td>12.59</td>
<td>0.51</td>
<td>0.43</td>
<td>0.13</td>
<td>30</td>
<td>0.90</td>
</tr>
<tr>
<td>40nM</td>
<td>9.21</td>
<td>0.44</td>
<td>0.36</td>
<td>0.15</td>
<td>25</td>
<td>0.90</td>
</tr>
<tr>
<td>30nM</td>
<td>6.39</td>
<td>0.45</td>
<td>0.39</td>
<td>0.20</td>
<td>16</td>
<td>0.88</td>
</tr>
<tr>
<td>*20nM</td>
<td>4.38</td>
<td>0.27</td>
<td>0.26</td>
<td>0.12</td>
<td>17</td>
<td>0.89</td>
</tr>
<tr>
<td>10nM</td>
<td>2.26</td>
<td>0.25</td>
<td>0.22</td>
<td>0.15</td>
<td>10</td>
<td>0.84</td>
</tr>
<tr>
<td>5nM</td>
<td>1.35</td>
<td>0.35</td>
<td>0.17</td>
<td>0.11</td>
<td>8</td>
<td>0.38</td>
</tr>
</tbody>
</table>

*Screening Concentration – going forward in 1536 for uHTS

- Uniform Z’ > 20 nM enzyme, with slight decrease at 10 nM (first pass).
- Signal becomes limiting at the lowest enzyme concentration.
- Stability of endpoint read is high in longevity tests
 (Z’ > 0.8 after 2 hours on ice and > 0.65 after 4 hours at room temperature)

✓ Once conditions optimized from Standardized Profiling, no additional optimization needed for screening.
Summary
Protein Stability and Functional Profiling

- General, homogeneous assays are powerful tools to assay protein stability and function.
 - Easy to tune conditions to a single protein vs. a survey of protein constructs (truncations/mutations).
 - Routine improvement in yields, purity, and minimized aggregation in recombinant protein preps.

- Similar, broad assay characterization can be readily applied to functional/enzyme assays.
 - Systemized set of questions/processes related to source of signal, variations in activity, and system variables.
 - “Growing pains” associated with transfer to robotics are minimized when protein mechanism is well characterized.
Acknowledgements

J&J PRD, LLC, Springhouse, PA

Roger Bone, Sr. VP Research & Early Development
Barry Springer, VP Enabling Technologies
Matthew Todd, Team Leader - L.G.Biology

Eric Asel
Alexander Barnakov
Luda Barnakova
Brian Bordeau
Theodore Carver
Winnie Chan
Rose Dandridge
Ingrid Deckman
Heather Devine
Jennifer Kirkpatrick

Alexandra Klinger
Diane Maguire
Tara Mezzasalma
Marina Nelen
Ioanna Petrounia
Kanan Ramachandren
Celine Schalk-Hihi
Ruth Steele
Wendy Sun
Geoffrey Struble