Differential scanning fluorimetry (Thermofluor)

A complementary technique in protein crystallization

ProtStruct - November, 2nd, 2011

Gabriele Cordara

Protein Crystallography group (Ute Krengel, Kjemisk Institutt)

Common problems in protein science

• Low solubility: what are the best storage conditions?

Theory

Applications

Protocol

• A series of functional variants: which one is the more stable?

Measuring protein stability by analyzing the thermal unfolding

protein folded/unfolded transition

The ThermoFluor technique

Data for the SYPRO orange dye (Steinberg, 1996, Analytical Biochemistry)

Theoretical treatment of the data

• non-linear regression using a sigmoidal curve (e.g. Boltzmann eq.)

$$y(x) = \frac{1}{1 + \exp\left(\frac{V_{50} - x}{a}\right)} \longrightarrow F(T) = F_N \frac{F_U - F_N}{1 + \exp\left(\frac{Tm - T}{a}\right)}$$

Advantages

Theory

Protocol

- very small quantities of protein (~ 300 μg, 96-well plate)
- Applications low protein concentration needed: 0.01÷1 mg/ml
 - reproducible results (s.d. 0.2 °C; Matulis, *Biochemistry*, 2005)
 - fast (~45' per run)
 - allows the simultaneous screening of multiple conditions (up to 384)

Disadvantages

• requires compactly folded (globular) proteins

Theory

Applications

Protocol

Berglund H. (SGC Stockholm), Topics in protein crystallization workshop, 2011, Uppsala

- thermodynamics-based intepretation of the data
 - correlates well with ITC (Lo et al., Anal Bioch., 2004)
 - correlates well with DSC and CD (Ericsson et al., *Anal. Bioch.*, 2006
 - needs further confirmation with other techniques

Applications

• Buffer screening

Theory Applications

Protocol

• Phillips et al., "The Combined Use of the Thermofluor Assay and ThermoQ Analytical Software for the Determination of Protein Stability and Buffer Optimization as an Aid in Protein Crystallization", Current Protocols in Molecular Biology, 2011

Test of the stability of different functional variants

• Lavinder et al., "High-Throughput Thermal Scanning: A General, Rapid Dye-Binding Thermal Shift Screen for Protein Engineering", JACS, 2009

• Kinetic studies

• Matulis et al., "Thermodynamic stability of carbonic anhydrase: measurements of binding ad stoichiometry using ThermoFluor", Biochemistry, 2005

• Ligand screening/ Functional studies

• Carver et al., "Decrypting the Biochemical Function of an Essential Gene from Streptococcus pneumoniae Using ThermoFluor Technology", JBC, 2005

Practical experiment - materials

• thermocycler with fluorescence excitation/emission filters

e.g. LightCycler 480 @ IMBV

• a suitable environment-sensitive dye

e.g. Sypro ORANGE (Sigma)

Table II. Overview of Extrinsic Fluorescent Dyes Applied for Protein Characterization

Dye	Application	Stock Solution	Typical Concentration for Measurement (µm)	Extinction Coefficient (m ⁻¹ cm ⁻¹)	Excitation (nm)	Emission maximum (nm)
ANS	surface hydrophobicity unfolding/folding aggregation conformation	aqueous, ethanol	1-30 (33,35,52,99,107)	5,000 (350 nm, water) (19) 4,950 (350 nm, water) (139)	350-380	505 ^a
Bis-ANS	surface hydrophobicity unfolding/folding aggregation conformation	aqueous, methanol, ethanol	1–20 (28,33,102)	16,790 (385 nm, water) (140)	385-400	515 ^a
Nile Red	surface hydrophobicity unfolding/folding aggregation conformation	DMSO, ethanol, DMF	0.5–20 (22,106,123)	19,600 (552 nm, DMSO) (141)	540-580	660 ^a
Thioflavin T	fibrillation	aqueous	5-40 (32,105)	36,000 (412 nm, water) (68) 26,620 (416 nm, ethanol) (142)	450	480-490 ^b
Congo Red	fibrillation	10 to 40% ethanol	10-300 (69,72,83)	45,000 (498 nm, water) 59300 (505 nm, ethanol) (143)	550	
DCVJ	microviscosity of protein environment rigidity	ethanol, DMSO	5 (23,24)	659,000 (453 nm, ethanol) (23)	450	480-505

" In water; blue shift in hydrophobic environment

^b In the presence of amyloids

Theory

Applications

Protocol

Hawe et al., Pharm. Research, 2007

Practical experiment – Pre opt experiment

Set up an experimental grid

Theory **Applications**

Protocol

Protein concentration [mg/ml]

- sealing with transparent foil (or oil)
- run the experiment (0.3°C/min, 3s hold time, ex 483 nm -em 568 nm)
- Data analysis and choice of the optimal conditions
 - sharpest transition
 - highest quantum yield vs minimum protein concentration

Practical experiment – Pre-experiment

0.1 mg/ml, SYPRO Orange 1:1000

Excel-based processing using Frank Niesen's (SGC Osxford) analysis tool

Practical experiment - protocol

96-well plate (25 μl/well)

- \bullet 10 $\mu l,$ 2.5X base
- 7.5 µl, 3.33X dye
- 2.5 µl, 10X target
- 5 µl, 5X protein

set optimal conditions from pre-opt experiment, thermocycler run

3. Data analsys

Theory

Applications

Protocol

• "DSF Analysis" + GraphPad Prism

ftp://ftp.sgc.ox.ac.uk/pub/biophysics

• "ThermoQ"

http://jshare.johnshopkins.edu/aherna19/thermoq/

Minimum Bibliography

• General interest:

Theory
Applications
Protocol

- Pantoliano et al., "High-Density Miniaturized Thermal Shift Assays as a General Strategy for Drug Discovery", Journal of Biomolecular screening, 2011
- Ericsson et al., "*Thermofluor-based high-throughput stability optimization of proteins for structural studies*", Analytical Biochemistry, 2006
- Niesen et al., "The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability", Nature protocols, 2007
- Thermodynamic analysis of the data:
 - Matulis et al., "*Thermodynamic stability of carbonic anhydrase: measurements of binding ad stoichiometry using ThermoFluor*", Biochemistry, 2005
 - John et al., "*van't Hoff enthalpies without baselines*", Protein Science, 2000